

DOE SNF Canister Survivability Report

Brett Carlsen

NSNFP Technical Exchange Meeting Las Vegas, NV October 2004

Providing for safe, efficient disposition of DOE spent nuclear fuel

Scope of the Survivability Report

- Addresses Standardized Canisters and MCOs
- Addresses credible preclosure drop events
- Considers the following canister conditions:
 - As-designed
 - Material and fabrication flaws
 - base metal flaws
 - weld flaws
 - Age-related degradation

Evaluation of As-Designed DOE SNF Canisters

- DOE SNF canisters are designed and fabricated to ASME B&PV Code Section III.
- Localized canister deformations due to drop events will likely exceed ASME Code.
- ISG-10 provides for alternatives to the ASME Code when requirements are determined to be not applicable or impractical.
- A combination of analyses and tests demonstrate survivability.

Structural Response Analyses

- Canister drops were modeled with ABAQUS/Explicit and validated by testing
 - 18-in. standardized canisters drop tests conducted in 1999
 - The 24-in. standardized canister and MCO drop tests conducted in 2004
- Results indicate that radionuclide containment will be maintained for all credible drop events.

Conclusions for As-Designed Condition

- Canisters are designed, fabricated, and N-stamped to ASME Code requirements.
- Analyses show a significant margin to failure.
- Drop tests validate the analytical model and demonstrate containment integrity.

Evaluation of Flawed Canisters

- Base metal flaws are considered bounded by weld flaws.
- For final closure welds as confinement boundaries on stainless steel canisters, ISG-18 states that reasonable assurance of no leakage is achieved by using welding and examination techniques described by ISG-15.
- DOE SNF canister weld design, specifications, and tests are consistent with ISG-15.
- According to ISG-15, the minimum detectable flaw size must be demonstrated to be less than the critical flaw size.

Testing Confirmed Critical Flaw Size Greater than Detection Threshold

- Flaws 150% of the detection limit (i.e., 1.5 mm flaw) did not result in through-wall cracking.
- Flaws up to a single weld pass (about 2.5 mm) did not result in through-wall cracking.

Additional Considerations for Weld Flaws

- All but the closure welds are made and inspected at the fabrication facility to ASME Code requirements and independently reviewed by an authorized inspector.
- Closure welds for the standardized canister are not near highest strain.
- MCOs have a mechanical seal inside of the closure weld providing an additional barrier against release.

Age-Related Degradation

Degradation mechanisms considered include:

- Electrochemical interactions, such as general corrosion, pitting corrosion, and SCC
- Mechanical forces such as overpressurization
- Metallurgical degradation such as hydrogen embrittlement, liquid metal embrittlement
- Thermal effects due to welding.

Conclusion for Age-Related Degradation

- Degradation is minimal even without complete drying because of the stainless steel materials.
- Drying, inerting, and verification of dryness prevent degradation.
- The probability of failing to properly dry a canister is ≤2.3 x 10⁻⁴.

Summary and Conclusion

- Canisters are designed, fabricated, and tested per ASME Code.
- Analytical modeling and testing confirm canister survives maximum credible drops.
- Testing demonstrates that undetectable (i.e. uncorrected) flaws will not result in crack growth.
- NRC ISG-15 provides confidence the approach will be accepted by the NRC.
- Failure to properly dry canister contents is considered the dominant failure mode.
- Conditional probability of canister breach given a drop is <2.3 x 10⁻⁴.

